|
公司基本資料信息
|
在需要脫氮的污水中,往往是復合碳源不足導致反硝化的去除率低,導致出水TN超標,所以外加碳源成為了目前適用于實踐的手段,目前碳源一般有乙酸鈉、面粉、葡萄糖等。
乙酸鈉的優點在于它能立即響應反硝化過程,能用作水廠運行時的應急處理。
乙酸鈉由于是小分子有機酸的原因,反硝化菌易于利用,脫氮效果是比較好的。但是,由于價格較為昂貴,污泥產率高,且目前污水廠的污泥處置問題也是一個較大的攻關難題,所以,將乙酸鈉應用于污水處理廠的大規模投加幾乎不可能。
糖類物質中,以面粉、蔗糖、葡萄糖為主,由于葡萄糖是比較簡單的糖,所以目前研究比較多。當碳源充足時,以葡萄糖為碳源的碳氮比較CH?OH/CH?O為碳源時高得多,為 6∶1~7∶1。碳源類型對硝氮的比還原速率幾乎沒有影響,對亞硝氮的比積累速率影響較大,只有葡萄糖在該研究中沒發現積累現象。 以葡萄糖為代表的糖類物質作為外加碳源處理效果不錯,可是,它作為一種多分子化合物,容易引起細菌的大量繁殖,導致污泥膨脹,增加出水中COD的值,影響出水水質,同時,與醇類碳源相比,糖類物質更容易產生亞硝態氮積累的現象。
生物轉化 VFA 來源于污泥水解的上清液,由于水解所產生的 VFA 擁有很高的反硝化速率,碳源可以直接由污水廠內部提供,在污泥減容的同時還減少了碳源運輸方面的問題,所以它是目前比較有優勢的碳源。
對于污泥水解利用做外碳源的研究,目前不同的結論有很多,但總體認為它作為反硝化脫氮系統的碳源是一種很有價值的方法。可是,對于不同的污泥,不同的水解條件,所產生的污泥中VFA 的成分有較大的差別,而由于成分不同,又能引起反硝化速率的不同(這也是為何很多研究不一致的原因),所以,如何將污泥水解的產物VFA統一化研究應用,還是一個比較大的難題。
反硝化反應為 6NO3-+ 5CH3OH → 3N2+ 5CO2 + 7H2O + 6OH- ,根據此反應去除1mg NO3-N 需要1.9mg CH3OH。以CH3-OH作為碳源比以葡萄糖作為碳源反硝化速率快很多。CH?OH/CH?O在保存和使用上都需要多注意,對人體有低毒,因為在人體新陳代謝中會氧化成比毒性更強。葡萄糖:若一葡萄糖作為碳源9C6H12O6),C6H12O6:NO3 -N 大約為7左右,容易引起細菌的大量繁殖,導致污泥膨脹,增加出水中COD的值,影響出水水質。建議用葡萄糖,用葡萄糖效果還是不錯的,面粉效果比葡萄糖差。
面粉:這里說的面粉為小麥精致面粉,成分上也是非常高的。當缺氧或者厭氧池子中的污泥濃度較低時,通過以小麥面粉補充碳源對活性污泥的形成是有著很大的幫助的。同時,面粉也較容易買到。如設備的容積比較小,可以考慮以面粉作為碳源。
乙酸鈉:若以乙酸鈉(CH3COONa)作為碳源,是小分子有機酸的原因, 反硝化菌易于利用,脫氮效果是較好的。一般冬天時投加碳源,都是建議可以選擇乙酸鈉作為碳源投加,易溶于水,易被微生物所利用,所產生的污泥量相比于其他碳源時略高,花費上也是高于以面粉,葡萄糖,CH?OH/CH?O作為碳源的。
復合碳源藥劑可以替代傳統外加碳源藥劑,避免了傳統碳源藥劑的高成本、高風險問題,大大提升了脫氮效率,降低了處理成本和污泥產量。
硝化反硝化脫氮是生物脫氮技術,目前在污水處理領域有著廣泛的應用。在微生物脫氮方面,進行反硝化作用時,異養反硝化菌需消耗做為碳源并提供能量的外加有機物(碳源)。 國內外對外碳源的投加種類和投加量進行了一系列的研究,發現不同外碳源對系統的反硝化過程影響不同,即使外碳源投加量相同,處理效果也不同。
1、反應池進水不全部進入厭氧區,而是部分進入缺氧區,以保證缺氧區反硝化有充足碳源;
2、二沉池部分回流污泥進入反應池的缺氧區,為反硝化補充碳源;
3、采用食品廠、造紙廠等某些高濃度有機廢水作為外加碳源等措施;
4、直接投加外部碳源。
外加碳源的選擇原則
1、外加碳源應易被微生物降解,易被反硝化菌利用,不存在殘留物對后續出水達標造成不利影響的問題;
2、反應速度足夠快,確保所投加的碳源盡量在厭、缺氧功能區內耗盡,避免增加后續曝氣系統的負擔和運行成本;
3、不會對系統內的微生物種群類型和含量造成影響,避免投加碳源前后出現微生物的短暫適應性問題;
4、價格便宜,安全性好,且易于投加、保存和運輸,可就近獲得。