|
公司基本資料信息
|
探測器原理
探測器(detector),是觀察 、記錄粒子的裝置 ,核物理和粒子物理實驗研究中不可缺少的設備。探測器可分為兩類:計數器和徑跡探測器。金屬探測器利用電磁感應的原理,利用有交流電通過的線圈,產生迅速變化的磁場。金屬探測器利用電磁感應的原理,利用有交流電通過的線圈,產生迅速變化的磁場。這個磁場能在金屬物體內部能感生渦電流。渦電流又會產生磁場,倒過來影響原來的磁場,引發探測器發出鳴聲。
紅外光子探測器
紅外光子探測器一般由半導體材料制成, 光子直接激發光敏材料的束縛電子成導電電子, 滿足一定能量的光子才能產生激發作用, 因此光敏材料的禁帶寬度或雜質能級決定了其響應波長, 稱響應對波長有選擇性。針對應用廣的三個大氣透過窗口, 發展了1 ~ 3μm的短波紅外(SWIR)、3 ~ 5μm的中波紅外(MWIR)和8 ~ 14μm 的長波紅外(LWIR)探測器。光子探測器靈敏度高, 響應快, 但大多在低溫工作, 需要制冷。焦平面陣列是新型紅外器件, 有些分立式探測器(如光導型探測器)不適宜焦平面結構;而另一些器件, 作為分立型器件使用時, 性能無優勢, 基本不用, 但由于其材料均勻性好、便于大規模集成和便于與硅信號處理電路集成而出現在焦平面的行列中。
光電探測器的基本工作機理
光電探測器的基本工作機理包括三個過程:(1)光生載流子在光照下產生;(2)載流子擴散或漂移形成電流;(3)光電流在放大電路中放大并轉換為電壓信號。當探測器表面有光照射時,如果材料禁帶寬度小于入射光光子的能量即Eg<hv,則價帶電子可以躍遷到導帶形成光電流。
當光在半導體中傳輸時,光波的能量隨著傳播會逐漸衰減,其原因是光子在半導體中產生了吸收。半導體對光子的吸收主要的吸收為本征吸收,本征吸收分為直接躍遷和間接躍遷。通過測試半導體的本征吸收光譜除了可以得到半導體的禁帶寬度等信息外,還可以用來分辨直接帶隙半導體和間接帶隙半導體。本征吸收導致材料的吸收系數通常比較高,由于半導體的能帶結構所以半導體具有連續的吸收譜。從吸收譜可以看出,當本征吸收開始時,半導體的吸收譜有一明顯的吸收邊。但是對于硅材料,由于其是間接帶隙材料,與三五族材料相比躍遷幾率較低,因而只有非常小的吸收系數,同時導致在相同能量的光子照射下在硅材料中的光的吸收深度更大。