變壓器發展歷史(三)
變壓器變壓原理首先由法拉第發現,但是直到十九世紀80年代才開始實際應用。采用R型變壓器制作的功率放大器電源,通常聲音很板結而匱乏靈氣,低頻往往沒有彈跳力而顯得較硬。在發電場應該輸出直流電和交流電的競爭中,交流電能夠使用變壓器是其優勢之一。變壓器可以將電能轉換成高電壓低電流形式,然后再轉換回去,因此大大減小了電能在輸送過程中的損失,使得電能的經濟輸送距離達到更遠。如此一來,發電廠就可以建在遠離用電的地方。世界大多數電力經過一系列的變壓終才到達用戶那里的。
云南朔銘電力工程有限公司,成立于2013年,是一個集購售電、火力發電、風力發電、光伏發電、水力發電、送變電安裝等工程建設為一體的總承包企業。變壓器效率在額定功率時,變壓器的輸出功率和輸入功率的比值,叫做變壓器的效率,即:η=(P2除以P1)x式中,η為變壓器的效率。公司還運營配售電、承接電力、水利、冶金、石油化工、交通及工業與民用建筑等行業機電設備的安裝、調試、維護,并承接相關房屋建筑總承包工程。朔銘堅持“服務至誠,精益求精,管理規范”的經營方針。公司愿與社會各界同仁友好合作,以完善周到的服務,共享創造繁榮之喜悅。
變壓器的薄片鋼芯
變壓器通常采用硅鋼材料的鐵芯作為主磁路。另有電流之比I1/I2=N2/N1電功率P1=P2注意:上面的式子,只在理想變壓器只有一個副線圈時成立。這樣可以使線圈中磁場更加集中,變壓器更加緊湊。 電力變壓器的鐵芯在設計的時候必須保防止達到磁路飽和,有時需要在磁路中設計一些氣隙減少飽和。 實際使用的變壓器鐵芯采用非常薄,電阻較大的硅鋼片疊壓而成。 這樣可以減少每層渦流帶來的損耗和產生的熱量。 電力變壓器和音頻電路有相似之處。典型分層鐵芯一般為E和I字母的形狀,稱作“EI變壓器”。 這種鐵芯的一個問題就是當斷電之后鐵芯中會保持剩磁。 當再次加電后,剩磁會造成鐵芯暫時飽和。 對于一些容量超過數百瓦的變壓器會造成的嚴重后果,如果沒有采用限流電路,涌流可造成主熔斷器熔斷。 更嚴重的是,對于大型電力變壓器,涌流可造成主繞組變形、損害。
識別電源變壓器
1)從外形識別:常用電源變壓器的鐵芯有E形和C形兩種。E形鐵芯變壓器呈殼式結構(鐵芯包裹線圈),采用D41.D42硅鋼片作鐵芯,應用廣泛。C形鐵芯變壓器用冷軋硅鋼帶作鐵芯,磁漏小,體積小,呈芯式結構(線圈包裹鐵芯)。
2)從繞組引出端子數識別:電源變壓器常見的有兩個繞組,即一個初級和一個次級繞組,因此有四個引出端。有的電源變壓器為防止交流聲及其他干擾,初、次級繞組間往往加一屏蔽層,其屏蔽層是接地端。因此,電源變壓器接線端子至少是4個。
3)從硅鋼片的疊片方式識別:E形電源變壓器的硅鋼片是交叉插入的,E片和I片間不留空氣隙,整個鐵芯嚴絲合縫。音頻輸入、輸出變壓器的E片和I片之間留有一定的空氣隙,這是區別電源和音頻變壓器的直觀方法。至于C形變壓器,一般都是電源變壓器。
變壓器故障分析解決方案(一)
螺栓或管子螺紋滲漏油
出廠時加工粗糙,密封不良,變壓器密封一段時間后便產生滲漏油故障。采用高分子材料將螺栓進行密封處理,達到治理滲漏的目的。另一種辦法是將螺栓(螺母)旋出,表面涂抹福世藍脫模劑后,再在表面涂抹材料后進行緊固,固化后即可達到治理目的。
散熱器滲漏油
散熱器的散熱管通常是用有縫鋼管壓扁后經沖壓制成在散熱管彎曲部分和焊接部分常產生滲漏油,這是因為沖壓散熱管時,管的外壁受張力,其內壁受壓力,存在殘余應力所致。主要用來保護雙繞組或三繞組變壓器繞組內部及其引出線上發生的各種相間短路故障,同時也可以用來保護變壓器單相匝間短路故障。將散熱器上下平板閥門(蝶閥)關閉,使散熱器中油與箱體內油隔斷,降低壓力及滲漏量。確定滲漏部位后進行適當的表面處理,然后采用福世藍材料進行密封治理。
瓷瓶及玻璃油標滲漏油
通常是因為安裝不當或密封失效所制。高分子復合材料可以很好的將金屬、陶瓷、玻璃等材質進行粘接,從而達到滲漏油的根本治理。
其它部位滲漏油,可根據實際情況進行處理。