各種類型的濺射薄膜材料在半導體集成電路(VLSI)、光碟、平面顯示器以及工件的表面涂層等方面都得到了廣泛的應用。20世紀90年代以來,濺射靶材及濺射技術的同步發展,極大地滿足了各種新型電子元器件發展的需求。20世紀90年代以來,濺射靶材及濺射技術的同步發展,極大地滿足了各種新型電子元器件發展的需求。例如,在半導體集成電路制造過程中,以電阻率較低的銅導體薄膜代替鋁膜布線:在平面顯示器產業中,各種顯示技術(如LCD、PDP、OLED及FED等)的同步發展,有的已經用于電腦及計算機的顯示器制造;在信息存儲產業中,磁性存儲器的存儲容量不斷增加,新的磁光記錄材料不斷推陳出新這些都對所需濺射靶材的質量提出了越來越高的要求,需求數量也逐年增加。
眾所周知,靶材材料的技術發展趨勢與下游應用產業的薄膜技術發展趨勢息息相關,隨著應用產業在薄膜產品或元件上的技術改進,靶材技術也應隨之變化。如Ic制造商.近段時間致力于低電阻率銅布線的開發,預計未來幾年將大幅度取代原來的鋁膜,這樣銅靶及其所需阻擋層靶材的開發將刻不容緩。另外,近年來平面顯示器(FPD)大幅度取代原以陰極射線管(CRT)為主的電腦顯示器及電視機市場.亦將大幅增加ITO靶材的技術與市場需求。至于形成精細分配的色粉顆粒的技術,近已經開發出直徑不超過10nm的色粉和不超過5pm的色粉。此外在存儲技術方面。高密度、大容量硬盤,高密度的可擦寫光盤的需求持續增加.這些均導致應用產業對靶材的需求發生變化。下面我們將分別介紹靶材的主要應用領域,以及這些領域靶材發展的趨勢。
平面顯示器(FPD)這些年來大幅沖擊以陰極射線管(CRT)為主的電腦顯示器及電視機市場,亦將帶動ITO靶材的技術與市場需求。如今的iTO靶材有兩種.一種是采用納米狀態的氧化銦混合后燒結,一種是采用銦錫合金靶材。濺射靶材的要求較傳統材料行業高,一般要求如,尺寸、平整度、純度、各項雜質含量、密度、N/O/C/S、晶粒尺寸與缺陷控制。銦錫臺金靶材可以采用直流反應濺射制造ITO薄膜,但是靶表面會氧化而影響濺射率,并且不易得到大尺寸的臺金靶材。如今一般采取方法生產ITO靶材,利用L}IRF反應濺射鍍膜.它具有沉積速度快.且能控制膜厚,電導率高,薄膜的一致性好,與基板的附著力強等優點。
稀土金屬制取(preparation of rare earth metal),將稀土化合物還原成金屬的過程。還原所制得的稀土金屬產品含稀土95%~99%,主要用作鋼鐵、有色金屬及其合金的添加劑,以及用作生產稀土永磁材料、貯氫材料等功能材料的原料。痕量元素的化學分析系指一克樣品中含有微克級(10克/克)、毫微克級(10克/克)、微微克級(10克/克)雜質的確定。瑞典人穆桑德爾(C.G.Mosander)自1826年先制得金屬以來,現已能生產全部稀土金屬,產品純度達到99.9%。常用的方法有金屬熱還原法制取稀土金屬和熔鹽電解法制取稀土金屬 。