分析靜定平面桁架的受力情況有以下兩種方法:
①截面法
②節點法
③麥克斯韋-克雷莫納法
空間桁架
組成桁架各桿件的軸線和所受外力不在同一平面上。在工程上,有些空間桁架不能簡化為平面桁架來處理,如網架結構。塔架、起重機構架等。空間桁架的節點為光滑球鉸結點,桿件軸線都通過聯結點的球鉸中心并可繞球鉸中心的任意軸線轉動。每個節點在空間有三個自由度。節點和桿件數的關系為W=3j-n,W>0為幾何可變桁架,W=0為幾何不變且無多余約束的空間桁架。空間桁架和平面桁架一樣,可用部分截割法和節點法求出桁架內所有桿件所受的內力。部分截割法則是利用空間任意力系的六個平衡條件求出各桿的內力。節點法是截取節點為隔離體,利用每個節點所受的空間匯交力系的三個平衡條件,求出各桿的內力。
跨中主要結構特點
各桿件受力均以單向拉、壓為主,通過對上下弦桿和腹桿的合理布置,可適應結構內部的彎矩和剪力分布。由于水平方向的拉、壓內力實現了自身平衡,整個結構不對支座產生水平推力。結構布置靈活,應用范圍非常廣。桁架梁和實腹梁(即我們一般所見的梁)相比,在抗彎方面,由于將受拉與受壓的截面集中布置在上下兩端,增大了內力臂,使得以同樣的材料用量,實現了更大的抗彎強度。在抗剪方面,通過合理布置腹桿,能夠將剪力逐步傳遞給支座。這樣無論是抗彎還是抗剪,桁架結構都能夠使材料強度得到充分發揮,從而適用于各種跨度的建筑屋蓋結構。更重要的意義還在于,它將橫彎作用下的實腹梁內部復雜的應力狀態轉化為桁架桿件內簡單的拉壓應力狀態,使我們能夠直觀地了解力的分布和傳遞,便于結構的變化和組合。
桁架式機器人的優勢和結構特點解析
桁架式機器人在工業自動化生產線上,工件經常需要在流水線與機床加工工位之間來回搬運。目前在自動化流水線上實現機床上下料,廣泛采用通用工業機器人機械手。關節式工業機器人載荷大、精度高、動作可編程,但價格昂貴,在搬運路徑較為簡單的情況下使用不經濟。目前,桁架式機械手適用于機床加工工位定位精度要求較高,但搬運動作又較為簡單的上下料環節的機械手。